异常检测算法 API
与其他算法类似,异常检测算法的传统流程也非常模式化,我们 sklearn 为我们提供了可以调用的 API
API
python
sklearn.neighbors.LocalOutlierFactor(n_neighbors=20, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None)
其中:
n_neighbors
:近邻数,默认为 20algorithm
:算法类型,默认为'auto',可选'ball_tree'、'kd_tree'、'brute'leaf_size
:树的叶子节点数,默认为 30metric
:距离度量,默认为'minkowski',可选'minkowski'、'euclidean'、'manhattan'、'chebyshev'、'minkowski'、'wminkowski'、'seuclidean'、'mahalanobis'、'haversine'、'hamming'、'jaccard'、'dice'、'russellrao'、'kulsinski'、'rogerstanimoto'、'sokalmichener'、'sokalsneath'、'yule'p
:距离度量参数,默认为 2metric_params
:距离度量参数,默认为 Nonecontamination
:异常点比例,默认为'auto',即自动确定异常点比例novelty
:是否为新颖点检测,默认为 Falsen_jobs
:并行数,默认为 None,即使用所有 CPU
常用方法:
fit(X)
:训练模型fit_predict(X)
:训练模型并预测异常点fit_transform(X)
:训练模型并转换数据decision_function(X)
:返回异常点的置信度predict(X)
:返回异常点的标签
案例
python
from sklearn.datasets import make_classification
from sklearn.neighbors import LocalOutlierFactor
# 生成样本数据
X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
# 训练模型
clf = LocalOutlierFactor(n_neighbors=20, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None)
clf.fit(X)
# 预测异常点
y_pred = clf.fit_predict(X)
# 输出结果
print(y_pred)
某一次的输出结果:
shell
[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1
1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 1 -1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 -1 1
1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1
1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1
1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 -1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1
1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 -1
1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]